价格 | 1000000.00元 |
---|---|
品牌 | 壹诺科技 |
区域 | 湖南省 - 长沙市 - 天心区 |
来源 | 湖南麓山云科技服务有限公司 |
详情描述:
智能风控在金融领域的应用模式应站在不同行业的视角来看。虽然本质上都是数据驱动的风险控制与管理决策,但由于银行、证券、保险的行业属性、业务场景差异较大,智能风控的应用模式也不同。 银行业:信贷、反欺诈、关联分析 虽然没有考证过,但我相信智能风控的称谓初应来源于银行业在信贷风险管理、交易反欺诈、风险定价和关联关系监控中的大数据应用。像FICO、Experian、Equifax等公司早已通过各类风控模型来实现反欺诈或征信。随着技术手段的丰富,数据获取的逐渐便利,商业银行可以通过外部数据合作的方式获取、存储、加工不同维度的数据。通过大数据基础平台的强大算力,计算用户之间的相关性,例如电话号、邮箱、地址、设备号等。 以消费信贷风控为例,按照贷前、贷中、贷后作为风控的时间维度,以信用品质、偿债能力、押品价值、财务状况、还款条件作为评估维度,时间和评估形成不同的信贷风险关注要点。商业银行结合不同信贷风险的关注要点,进行相关数据的获取。 除大数据外,智能风控的“智能”主要体现在机器学习算法构建模型。在授信申请、违约损失计算、逾期预测、反欺诈等业务目标确定后,通过内外部数据的整合、预处理、特征统计等方法,再选择合适的算法进行分析。而在基础工具的运用上,由于运用到大数据技术,多离不开Hadoop/Spark这样的基础计算平台,R/Python这些数据分析工具。当前一些专注于机器学习厂商如第四范式、阿里云也研发了可拖拽的建模工具,部分降低了机器学习的学习成本和门槛。 无论是对个人或是企业的银行贷款、抵质押或担保贷款,亦或是供应链贷款、评分卡、巴塞尔协议中的贷款,还是当前热门的智能风控,根本原理都是衡量客户还款能力和意愿。智能风控只是通过更多的数据维度来刻画客户特征,从而更准确的量化客户违约成本,实现对客户的合理授信。可以看出,其原理和方法论和传统金融风控没有区别,但可以通过自动化审批来替代人工审核,降低人力成本。 www.inuol.com
联系人 | 刘敏 |
---|